skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tessaro, Stefano"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. In the multi-user with corruptions (muc) setting there are n users, and the goal is to prove that, even in the face of an adversary that adaptively corrupts users to expose their keys, un-corrupted users retain security. This can be considered for many primitives including signatures and encryption. Proofs of muc security, while possible, generally suffer a factor n loss in tightness, which can be large. This paper gives new proofs where this factor is reduced to the number c of corruptions, which in practice is much smaller than n. We refer to this as corruption-parametrized muc (cp-muc) security. We give a general result showing it for a class of games that we call local. We apply this to get cp-muc security for signature schemes (including ones in standards and in TLS 1.3) and some forms of public-key and symmetric encryption. Then we give dedicated cp-muc security proofs for some important schemes whose underlying games are not local, including the Hashed ElGamal and Fujisaki-Okamoto KEMs and authenticated key exchange. Finally, we give negative results to show optimality of our bounds. 
    more » « less
    Free, publicly-accessible full text available December 11, 2025